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ABSTRACT 
In this paper, a new framework for scene understanding using multi-modal high-ordered context-model is introduced. 
Spatial and semantical interactions are considered as sources of context which are incorporated in the model using a 
single object-scene relevance measure that quantifies high-order object relations. This score is used to minimize 
semantical inconsistencies among objects in dense graph representation of the scene category during the object 
recognition process. New context model is later incorporated in a Conditional Random Fields (CRF) framework to 
combine contextual cues with appearance descriptors in order to increase object localization and class prediction 
accuracy. A novel context-based non-central hypergeometric unary potential is defined to maximize the semantical 
coherence in the scene. Further refinement is performed using context-based pairwise and high-order potentials which 
use alpha-expansion and graph-cut to find optimal configuration. Comparison between the purposed approach and 
state-of-art algorithms shows effectiveness of this approach in annotation and interpretation of scenes.  
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1. INTRODUCTION 
Scene understanding has been studied for decades in areas 
such as content annotation, object and event recognition 
and media retrieval engines. The main objective is to 
provide more precise and accurate description of the scene 
in order to better respond to user queries. Media search 
engines currently use manually entered tags in metadata to 
recognize the content of images. Automated annotation 
frameworks are preferred methods for high volume 
contents. They utilize audio visual features to localize and 
classify candidate objects in an image which assigns class 
labels to components of a scene [1].  
In a top-down approach, a global feature is extracted and 
used to classify the image as high-level categories such as 
(indoor/outdoor). Later, more specialized object detectors 
in that category are applied for detail analysis of the 
image. Torralba et al. [2, 3] presents a coarse scene-level 
global feature called ‘gist’ and use it to classify a scene as 
indoor or outdoor. This approach also allows checking for 
presence of an object types without running an object 
detector.  
In a bottom up approach, individual objects detectors are 
applied to the extracted features from homogenous 

regions of the image to identify a matching object class. 
Key disadvantages of these paradigms are high 
dimensionality of the required detectors and region 
analysis in isolation. Previous work shows that 
performance of recognition systems could be significantly 
improved when scene-level knowledge known as 
“context” is exploited [4, 5, 6, 7, 8]. By definition, any 
information that can be used in accurate semantical 
recognition of scene elements and its underlying concepts 
is called context [9]. Contextual models can capture 
semantical properties, relationships and interactions 
among image components which can be used to infer 
higher level meaning of a scene.  
Object detectors face many challenges due to poor image 
quality or overall image content complexity in cluttered 
images. Incorporating contextual information is used to 
disambiguate, refine and improve the recognition results. 
Additionally, context cueing can reduce dimensionality of 
required object detectors. Traditionally, contexts are 
constructed using semantical and spatial relations of 
objects in a scene [8]. More recent applications use 
additional types of contextual information provided by 
acquisition system such as sensory context (GPS) and 3D 
geometric scene context (orientations, support surface, 
horizon line) [9]. 
Semantic context is among most studied types of contexts 
which models object relationships such as co-occurrence 
statistics in an image. Spatial context captures inter-
objects scale or location relationships based on various 
taxonomies such as horizontal or vertical relative 
positions [10].  
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The previous work on context-based detectors is mostly 
limited to studying the objects in pairwise relations with 
less attention to higher order relations and structure of 
scene layouts. An image of real life scene configuration 
can be rather complex where multiple types of contexts 
should be considered to explain high-ordered 
relationships.  
In this paper, a novel multi-source high-order contextual 
scene recognition framework is introduced to represent 
realistic scene configurations. This framework measures 
contextual consistency among the composing elements of 
an image using a measurement called “object-to-scene 
relevance score” which measures contribution of an 
object type to overall semantical meaning of the scene for 
a given context. The object relevance score is used in 
modeling underlying scene representation based on high-
ordered relationships in the form of undirected graph.  
In summary contributions of this work is as follows: 

- Definition of a context-based conditional random 
field designed to incorporate multiple source of 
context in high-order relationship. 

- Definition of object-scene relevance score that 
encodes layout, relations and interactions of an 
object to conform to scene consistent context.  

- Use of a novel unary potential based on non-
central hypergeometric distribution to predict the 
object labels in a context-based generative 
process.  

- We define a high-order potential to encode high-
order contextual relationship of the objects.  

The rest of this paper is organized as follows. Section II is 
an overview of the related work. In Section III we present 
our framework in detail. Section IV presents our 
experimental results. Section V is concluding remarks.   

2. RELATED WORK 
Contextual scene understanding frameworks have been 
studied in many of the previous work [11, 12]. Wolf and 
Bileschi [13] introduced “semantic layers” which are 
constructed by extracting and combining various features 
such as color, texture, geometric feature maps and 
saliency maps at pixel location during the learning stage. 
Each semantic layer represents an object category indicate 
the presence of a particular object in the image at a 
semantic layer.  
Galleguillos et al. [14] explored pairwise interactions 
between pixels, regions and objects to extract and learn 
three source of context semantic, boundary support and 
contextual neighborhood.  
Torralba et al. [3] introduced a simple framework for 
modeling the relationship between context and object 
properties. Scale context was used to provide a strong cue 
for scale selection in the detection of high-level structures 
as objects. Contextual features were obtained from a set of 
training images and object properties were based on the 
correlation between the statistics of low-level features 
across the entire scene.  
Choi et al.[15] used tree-structure graphical model to 
encode hierarchical dependencies among object categories 
and scenes. They used contextual score to quantify 
pairwise information such as position and scale 
relationship.  
Jones and Shao [16] studied pairwise contextual 
interactions of events and scene elements in a clustering 
application. They demonstrated performance 
improvement over state-of-the-art clustering methods.  
High-order relationships are examined in [17, 18, 19] on 
single source of context such as co-occurrence. The 
shortcoming of these methods is when discriminative 
contextual cues may appear in other contextual modalities 
such as scale or spatial context as is illustrated in Figure 1.  
On the other side of spectrum, generative models such as 
[20] are widely used to model multi-context relations. The 
limitation of these frameworks and generally the 
generative process is the independence assumption on 

 
a) Semantic consistency 

Left: sofa outdoor (score=0.13),  
Right: sofa in living room (score= 0.75) 

 
b) Scale inconsistency 

Left: extremely large chair (0.12) 
Right: normal scaled elements (0.61) 

 
c) Spatial Inconsistency 

Left: car flying in the sky (0.29) 
Right: car on the road (0.72) 

Figure 1. These images show sample scenes and 
their contextual relevance scores obtained using 
higher-order relationship. Images on the right 

show objects consistent with scene context. Images 
on the left demonstrate contextual inconsistency 

(higher scores signifies more consistency). 
 



 
 

observed data to make the inference tractable which is 
very restrictive.  
Previous work shows success of context-based methods in 
improving performance of object localization and 
recognition. We extend previous work to exploit high-
order multimodal contextual relationships instead of pair-
wise approach. We propose a high-order context 
framework that learns appearance, structure and 
semantical consistency of the scene and infers its 
parameters based on multi-modal context sources for 
domain object types. Objects co-occurrence statistics is 
defined in high-order to capture scene level semantics. For 
example objects in {car, motorcycle, road, sky} tend to 
appear in outdoor street images and {car, truck, rubber 
duck, Mickey Mouse} represents set of children toys.  
Spatial and scale contexts are sources of layout topology.  
Location and scale information is obtained from bounding 
box information in training dataset and transformed into 
the set of contextual spatial attributes during learning 
process. Bounding box information is acquired from the 
image annotations provided in Sun3971 dataset. This 
dataset provides a better alternative to Google Sets or web 
documents used in some related works [21].   
Context model represents a scene with fully connected 
graph consisting objects at each node. These nodes are 
connected with undirected edges. Each edge is assigned 
with contextual relevance measurement that quantifies the 
relations between two objects given the dominated 
context in that clique.  As shown in Figure 1, contextual 
relevance is defined to maximize semantical consistencies 
including scale and location in a scene. Contextual 
inconsistencies may not manifest in pairwise relations 
where in ternary relation a clear violation is evident. The 
object-scene score is scalable and extendible to other 
datasets since it not dependent on visual primitives. 
Contextually related objects form semantically coherent 
cliques in our graph representation and are labeled 
according. 
Conditional random fields (CRF) [22], a discriminative 
framework is used to incorporate contextual cues along 
with appearance features in a single model. This allows to 
model intrinsic and extrinsic structure of an image for 
better understanding of its underlying concepts [23]. 
Given observed variable 𝑋, CRFs model the conditional 
distribution of 𝑌 given 𝑋 to encode complex dependencies 
of 𝑌 on 𝑋. In this paper definition of CRF is extended by 
conditioning on visual features and context which is 
called Context-based CRF (CBCRF). CBCRF combines 
appearance descriptors, contextual relations and layout 
structure of the objects likely to be present in that scene 
category. 
Our experiments show that contextual relations of high-
order can improve object detection, scene classification 
and can be used in many other applications such as 
detection of out-of-context or black-boxed object.  

                                                           
1 http://vision.princeton.edu/projects/2010/SUN/ 

3. MODEL AND ALGORITHMS 
A conditional random field (CRF) model [22] is used to 
learn the conditional distribution over the set of class 
labels given an image. The following is formalization of 
the model: 
With K being total objects in our dataset, let’s consider a 
random field 𝑌  defined over set of 
variables {𝑦1,⋯ ,𝑦𝐾} to represent labels of all objects. 
Domain of each variable 𝑦𝑖 is ℒ = {𝑙1,⋯ , 𝑙𝐾} which is set 
of all possible labels. Let 𝑋 = {𝑥1, … , 𝑥𝐷} be the set of 
images in our dataset, 𝑅𝑖 = {𝑟1,⋯ , 𝑟𝑛} be set of visual 
words of ith image, 𝐶𝑖 = {𝑐1,⋯ , 𝑐𝐾} be image sub-region 
category labels representing objects, and  𝑆𝑖 = {𝑠1,⋯ , 𝑠𝐾} 
be set of contexts under which independent measurement 
of semantic relevance calculated for detected objects in ith 
image. Each image is composition of arbitrary number of 
object instances in the same scene category.  
  

 
a) Fully Connected CRF 

  

b) Context-based CRF 
Figure 2. Graphical representation of the CRF model 

(top) and context-based CRF model (below) 
The use of a conditional random field allows us to 
incorporate appearance based descriptors, layout, and 
location cues in a single unified model. Our context-based 
CRF approach aims to find optimal configuration 
𝑌 = {𝑦1,𝑦2, … ,𝑦𝑛} which is characterized by Gibbs 
distribution 𝑃(𝑌|𝑅):  

𝑃(𝑌|𝑅,𝜃) = 𝑃(𝑌| 𝑅, 𝑆,𝜃) 𝑃(𝑆|𝑅,𝜃)  

where 𝜃 is model parameters, 𝑆 is context and 
𝐸(𝑌|𝑆,𝑅,𝜃) is the probability of the labeling 
configuration 𝑌 given visual words conditioned on the 
context the conditional random field defined as: 

𝑃(𝑌| 𝑅, 𝑆,𝜃) =
1

𝑍(𝑌, 𝑆) exp�−𝐸(𝑌|𝑅, 𝑆)� (1) 

where 𝑍 is normalization partition function.  
Our model is fully connected CRF with unary, pairwise 
and high-order potentials with following Gibbs Energy: 

𝐸(𝑌| 𝑅, 𝑆) = �𝜓𝑢(𝑦𝑛)
𝑛∈𝛮

+ � 𝜓𝑝�𝑦𝑖 ,𝑦𝑗� + �𝜓ℎ(𝑦𝑖)
𝑖∈𝛨(𝑖,𝑗)∈𝛲

 
(2) 

𝑦1  𝑦2  𝑦𝐾  

𝑟1 𝑟2 𝑟𝑛  

𝑠1 𝑠2 𝑠𝑚  

𝑦1  𝑦2  𝑦𝐾  

𝑟1 𝑟2 𝑟𝑛  



 
 

where 𝛮,𝛲,𝛨  are number of candidate objects in the 
image, number of pairwise and high-order cliques 
respectively.  

Scene Relevance Score 
Context-based conditional random field model builds on 
the “Scene Relevance Score” (SRS) which is calculated 
using high-ordered interaction of the objects in each scene 
category.  
The high-order pure independence rule [24] is used to 
define spatial context probabilities. Let 
𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} be set of object types in our dataset, 
then 𝐴𝐾 represents the set of possible combinations of 
object types with 𝐾 object present and 𝑛 − 𝐾 not present. 
For example considering set of 𝐶 = {𝑐1, … , 𝑐4} with four 
object classes, the set of object configurations with only 
two objects present could be expressed as 𝐴2 =
{0011, 0101, 0110, 1010, 1100}.   
Scene relevance-score is defined as posterior probability 
which is log likelihood of spatial, scale and semantic 
contexts: 

𝜏1…𝑛 = 𝑙𝑙𝑙� ��𝑃𝐿1…𝑛
𝑣 |𝑎�

(−1)𝑛−𝑘�𝑃𝑋1…𝑛|a�
(−1)𝑛−𝑘

𝑎∈𝐴𝐾

𝑛

𝑘=0

 (3) 

where 𝑃𝐿1…𝑛
𝑣 |𝑎 is spatial context and is defined as posterior 

probability of vertical location of an object in respect to 
others in a high-order relation. 𝐿1…𝑛

𝑣   is high order relative 
vertical location configuration defined as joint probability 
distribution of 𝐿1, 𝐿2, … , 𝐿𝑛.  𝐿𝑖 ∈ {𝑎𝑎𝑙𝑎𝑎, 𝑎𝑎𝑙𝑙𝑏, 𝑎𝑎𝑎𝑛} 
and is determined be comparing centroids of each object’s 
bounding box. For example expected relative location of 
“Sky” is “above” the object “Grass”. 
𝑃𝑋1…𝑛|a is high-ordered scale context and is defined as joint 
probability distribution of 𝑋1,𝑋2, … ,𝑋n where  𝑋i is the 
expected relative scale relation obtained by transforming 
the image plane into 3D coordinates for relatives scale 
measurements based on labeled training sets.  
Information obtained from relative horizontal location 
does not offer discriminative information and is not 
modeled.  
The semantical relationship is implicitly encoded in scene 
relevance score in Equation (3) with shows strong 
semantical correlation for positive values and negative 
correlation for negative values of 𝜏1…𝑛 and zero for no 
relation.   

𝜏1…𝑛 = 𝜃1…𝑛 + 𝛾1…𝑛 (4) 

Normalizing 𝜏 transforms the value to zero and one range 
which more suitable to our context model. The following 
function transforms the 𝜏  to normalized form: 

𝜏1…𝑛������ =  
1

1 + 𝑎𝑥𝑒 (−𝜏1…𝑛) 

The normalized value of 𝜏1…𝑛������ is interpreted as follows: 

�
0.5 < 𝜏̅ ≤ 1
𝜏̅ = 0.5

0 ≤ 𝜏̅ < 0.5
 

semantical related 
no relation 
negative relation 

(5) 

Strength of relationship increases with the value of 𝜏̅ from 
0 (impossible) up to 1 (strongly coupled). 

Unary potential 
The model appearance, affinity and shape are modeled 
using unary potential 𝜓𝑢. Unary potential is the most 
important potential and is sensitive to mislabeling as a 
result of initialization. By incorporating context the 
classification of objects is influenced by dominant context 
and hence initially misclassified labels can be refined. 
Unary potential is defined as:  

𝜓𝑢(𝑦𝑛) = 𝑒(𝑌|𝑅, 𝑆) (6) 

where 𝑆𝑖 = {𝑠1,⋯ , 𝑠𝑚} is all possible context graphs and 
the term 𝑒(𝑌|𝑅, 𝑆) is probability that object ith would be  
assigned label y given the relevance score of the object.   
Wallenius Latent Dirichlet Allocation (WLDA) [28] is a 
generative process for object localization. An image is 
partitioned into related groups of visual words which 
represent candidate objects and assigns best annotation 
label to the image category. In this process each label is 
associated with image feature data as response variable 
which is influenced by contextual constraints as bias 
weight parameter in Wallenius distribution.  
The generative process of annotating a candidate object 
with its class label response variables is as follows: 

- Draw topic proportions from Dirichlet 
prior 𝜃~𝐷𝐷𝑟(𝛼). 

- For each visual word 𝑅𝑛,𝑛 ∈ {1, 2, … ,𝑁}: 
- Draw topic assignment  𝑧𝑛|𝜃~𝑀𝑀𝑙𝑀(𝜃) 
- Draw region visual word  𝑟𝑛|𝑧𝑛~𝑀𝑀𝑙𝑀(𝛽𝑟) 

- For each object class label  
- draw a Wallenius 𝑐𝑖  conditioned on contextual 

constraints given by  𝑒(𝑌|𝑍, 𝑆)~𝑊𝑎𝑙𝑙(𝑌,𝑍, 𝑆) 
where 𝑌 is response variable, 𝑍 is a set of topics 
equivalent to candidate objects, and 𝑆 is context.   
The objective is to obtain probability of most semantically 
consistent labeling configuration Y given topic 
distribution: 

𝑒(𝑌|𝑍, 𝑆) = 𝛬(𝑌,𝑍)𝐼(𝑌,𝑍, 𝑆) 

𝛬(𝑌,𝑍) = ��
𝑦𝑖
𝑧𝑖�

𝑘

𝑖=1

 

𝐼(𝑌,𝑍, 𝑆) = � ��1 − 𝑀
𝑠𝑖

∑ 𝑠𝑖𝑀
𝑖=1 �

𝑦𝑖

𝑑𝑀
𝑀

𝑖=1

1

0
 

(7) 

Computing integral in Equation (7) is intractable because 
of the fractional exponent and must be approximated. 
First we simplify the formula for binary variables 
(Λ(𝑌,𝑍) = 1) as follows: 

𝐼(𝑌,𝑍, 𝑆) = � ��1 − 𝑀
𝑠𝑗
𝑠 � 𝑑𝑀

𝑀

𝑗=1

1

0
 (8) 

where 𝑠 = ∑ 𝑠𝑖𝑀
𝑖=1 .  

Integrand in Equation (8) can be transformed to an easier 
to solve polynomial using variable substitution described 
in Equation (9).  



 
 

The polynomial of Equation (9) can be easily solved by 
scaling the context values to integer and reducing them by 
dividing to the greatest denominator.  

t = u𝑠 
𝑑𝑀 = 𝑠. u𝑠−1𝑑𝑀 

𝑒(𝑌|𝑍, 𝑆) = � ��1 − 𝑀
𝑠𝑗
𝑠 � 𝑑𝑀

𝑀

𝑗=1

1

0
 

= � ��1 − (u𝑠)
𝑠𝑗
𝑠 � . 𝑠. u𝑠−1𝑑𝑀

𝑀

𝑗=1

1

0
 

= 𝑠.� u𝑠−1.�(1 − 𝑀𝑠𝑗)𝑑𝑀
𝑀

𝑗=1

1

0
 

(9) 

Pairwise potential 
The pairwise term 𝜓𝑝�𝑦𝑖 ,𝑦𝑗� reinforces contextual 
compatibility between label assignments of the 
neighboring object. It predicates on the assumptions that 
objects (or pixels) adjacent to each other are more likely 
to have the same label or be semantically related. 
Probability of label assignment follows the given context. 
This potential takes the form of Potts model (Vi ≠ Vj) to 
penalize semantically incompatible labels: 

𝜓𝑝�𝑦𝑖 , 𝑦𝑗� = �
0      

 λ𝑝𝑎𝑥𝑒 �−�𝑙𝑖 − 𝑙𝑗�
2�   

𝐷𝑖 𝑦𝑖 = 𝑦𝑗  
𝑙𝑀ℎ𝑎𝑟𝑏𝑠𝐷𝑎 (10) 

where 𝑙𝑛=𝑒(𝑦𝑛|𝑆) and λ𝑝 is parameter whose value is 
learned from training data. This potential has shrinkage 
bias which means it only enforces label consistency in 
adjacent objects.  

High-ordered potential 
The high-order potential 𝜓ℎ(𝑦𝑖) is defined to maximize 
contextual consistency and compatibility of the label 
assignment in neighborhood of an object. To achieve this, 
objects in an image are grouped in semantically 
compatible and consistent cliques [19]. A penalty is 
applied to non-relevant ones to disassociate them from 
clique. Consistency of the clique is measured using the 
variance of unary feature response evaluated on all objects 
in that clique as following: 

𝜗𝐶 = 𝑎𝑥𝑒 �−
‖∑ (𝐼𝑐 − 𝜇)2𝑐∈𝐶 ‖

|𝐶𝐿| � 

Where 𝐶 is the clique, |𝐶𝐿| is cardinality of clique, 𝐼𝑐 =
𝑒(𝑦𝑛|𝐶) and 𝜇 = ∑ 𝑒(𝑦𝑛|𝐶) |𝐶𝐿| ⁄𝑛∈𝐶 . Given the CRF model 
in Equation (2), high-order potential is defined as 
following:  

𝜓ℎ(𝑦𝑖) = � 𝑁𝜆ℎ𝜗𝐶
1
𝑄     

  𝜆ℎ𝜗𝐶      
 

𝐷𝑖 𝑁 ≤ 𝑄 
 
𝑙𝑀ℎ𝑎𝑟𝑏𝐷𝑠𝑎 

(11) 

where 𝑁 is number of elements in the clique 𝑦𝑖 with label 
assignment that are inconsistent with dominant label in 
that clique and λh is model parameter which is obtained 
during the training. Consistency of this potential is 
controlled by threshold parameter 𝑄 which defines a cut-
off point where at from point stronger penalty is imposed 
on very semantically consistent cliques.   With the 
objective of finding the most probable labeling 
configuration that maximizes the conditional probability 
of Equation (1), alpha-expansion graph-cut optimization 
algorithm [25] is applied to get the optimal configuration 
𝑦∗ = [𝑦1∗,𝑦2∗, … ,𝑦𝑛∗]𝑇.  

𝑦∗ = 𝑎𝑟𝑙𝑚𝑎𝑥 𝑃(𝑦|𝐷) = 𝑎𝑟𝑙𝑚𝑎𝑥𝑚𝐷𝑛 𝐸(𝑦) (12) 
where 𝑦𝑛∗ is unit basis vector that represents the result of 
object localization for nth object in the image.  
Contextual relevance is used during the optimization to 
eliminate false positives and keep correct detections.  

4. EXPERIMENTS 
Dataset  
Object recognition algorithm was evaluated on subset of 
SUN397 datasets with 2152 images randomly selected as 
training set and 2010 images selected as test set from 62 
object categories. The metadata of labeled images were 
used to extract images of objects according to their 
bounding box information. In pre-processing phase, 
images were scaled to meet a minimum dimensional 
constraint.  

Training 
Image feature space was represented as Bag-of-Features 
(BoF)[26]. Each code-word in the dictionary is a visual 

 
a) Original image      b) Encoded image visual words histogram for the image shown in (a) 

Figure 3- Encoding of a sample image in corresponding visual word frequencies.  



 
 

appearance feature which was constructed based on 
“Speeded Up Robust Features” (SURF) [27] algorithm. 
SURF feature points were obtained from 64x64 blocks for 
image objects and transformed into descriptors. Top 
𝑚 strongest SURF descriptors were selected and 
normalized across entire training set. The value of 𝑚  is 
calibrated empirically. Selected descriptors were then 
quantized into vocabulary sizes of 𝑉 visual words using 
K-means clustering algorithm. Figure 3-(b) illustrates BoF 
representation of an image in (Figure 3-(a)) encoded as 
histograms of visual words (𝑉 =1000) which is used to 
train our model.  
There are two sources of parameters in this study. The 
first one is the LDA parameter set which is learned the 
way is described in [28]. The second set of parameters is 
the CRF parameter set {𝜆𝑝, 𝜆ℎ}. These parameters were 
all learned from the training set using the same method 
introduced in [19].  

Evaluation Methods 
For evaluation of context-based CRF framework, 
multiclass support vector machine (SVM) [29] 
classification method was used as baseline and compared 
to the state-of-the-art tree-based contextual model [15] 
using code provided at their site.  

Metrics  
Normalized mutual information (NMI) [30] is a metric 
used to evaluate performance of clustering and to measure 
how well objects in test images are assigned to object 
categories. NMI is a number between 0 and 1 and with 1 
being perfect object label assignment and is calculated as 
follows: 

𝑁𝑀𝐼 =
∑ �𝑥ℎ,𝑙� 𝑙𝑙𝑙 �

|𝑋|. �𝑥ℎ,𝑙�
|𝑥ℎ|. 𝑐𝑙

�ℎ,𝑙

��∑ |𝑥ℎ| 𝑙𝑙𝑙 �
�𝑥ℎ,𝑙�
|𝑋| �ℎ �∑ 𝑙𝑙𝑙 � 𝑐𝑙|𝑋|�𝑙

 (13) 

where X is set of images, 𝑥ℎ is set of images in class h, 
𝑥ℎ,𝑙 is number of images that are member of both classes h 
and l and  𝑐𝑙 is images labeled as class l.     
Figure 4 illustrates object detection NMI that was applied 
to the models in these experiments. The results show 
context-based CRF model performs better in various topic 
sizes of K. These experiments also demonstrate that larger 
number of the topics have little impact on the object 
detection performance but has serious computational cost 
and performance degradation as the number of topics 
increases. When a scene contains less than K objects, the 
absent object categories will have very few or no 
members such that the impact will be small enough to be 
neglected. The optimum value of K is determined 
empirically and set to 150.  
To evaluate performances of our framework for 
localization and presence F-Measure was used which is a 
balanced score between precision and recall (F1) as 
follows: 

𝐹1 =
2 × 𝑃𝑟𝑎𝑐𝑎𝑠𝐷𝑙𝑛 × 𝑅𝑎𝑐𝑎𝑙𝑙
𝑃𝑟𝑎𝑐𝑎𝑠𝐷𝑙𝑛 + 𝑅𝑎𝑐𝑎𝑙𝑙

 (14) 

Classification performance was evaluated using objects 
labels in Ground-truth.  
Figure 5 shows how this mettric was used in finding 
optimum parameter values for pairwise and high-order 
potentials.  

 
Model Parameters 
Parameters that have influence on the distribution of 
topics in potentials were also investigated. There are two 
main parameters that require calibration, pairwise (λ𝑝) 
and high-order parameter (λℎ).  
The tuning result on SUN397 is given in the top chart of 
Figure 5. Parameters λ𝑝 and λℎ varied independently from 
0 to 1 with interval 0.1 to pick the optimum value. As is 
illustrated in Figure 5, the performance improves as the 
value of the parameters increases. Slightly sharper gain in 
high-order potential than pair-wise demonstrates 
effectiveness of this potential.  

Result of Empirical Study 
To build the framework, a graph was constructed for each 
scene type to maximize contextual consistency. First scale 
and location context scores were calculated for all object 
pairs (𝜏𝚤𝚤���) in that image using Equation (5). Pairwise 
relations with 𝜏𝚤𝚤��� > 0.5 were added to the graph and 
others were ignored. Next, high order context for all 
cliques combinations (i.e. 𝜏1..𝑘�����) were computed and the 
clique with highest average score was selected as 
dominance context. The context model was fitted using 
Gaussian distribution for each context type which later 
was used in building CRF model to predict correct label 
assignment for candidate objects.  
Table 1 shows the comparisons between baseline detector, 
SVM, tree-based context and our framework. From the 
table, we see our framework produces the best 
performance in both object localization and presence. 

 
Figure 4 Object detection performance using NMI 

metric (1.0 is most accurate) 
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The localization improvement over baseline detector 
algorithm is about 37.2% and the improvement over the 
state-of-the-art context model (tree context) is 7.5%. For 
the presence, the corresponding improvements are 37.6%, 
14% respectively.  

 
Performances of proposed framework for object detection 
is illustrated in Figure 6 which shows improvement over 
the tree-context model for most object categories. 
Table 2 shows some examples of results in which context 
constraints are strictly enforced to facilitate the 
contextually consistent detections.  
Results shown illustrates that context-based CRF has 
improved compare to performance of the SVM and CRF 
in classification of the objects.  

5. CONCLUSIONS 
In this paper, we presented a discriminative model that 
combined the power of a generative model as unary 
potential and used an object-scene relevance score to 
encode pair-wise and high-order semantic contexts. We 
showed how to encode the high-order relationship among 
objects and build a robust models to enforce location, 

scale and semantical constrains. We compared our 
framework with other context-based model which 
employed similar sources of contexts in pairwise 
relations.  
Our results demonstrated that our framework 
outperformed the current state-of-the-art context-based 
object localization methods. Our generative process 
implemented a true context-based approach where the 
context was directly applied to classification problem as 
unary potential. We showed an inference method to solve 
the intractability problem of the WLDA to a solution that 
could be solved at polynomial time. We then applied our 

framework to distinguish the contextual consistency of the 
candidate objects using various contextual cues.  
During our experiments we observed two main 
weaknesses. First, building a meaningful contextual 
relevance score requires presence of large number of 
objects in a scene category with ternary or more 
interactions. This is limiting factor that restricts choice of 
training dataset. Second drawback is relatively high 
computation requirement of this method, which is a side 
effect of WLDA generative process.   

Metric Localization Presence 

SVM 50.2 57.7 

Tree-Based 64.1 69.6 

Context-based 
CRF 68.9 79.4 

Table 2. Object localization and presence 
performance comparison 

 

Figure 6. Object detection performance of CBCRF 
method compare to tree context method using 

SUN397 dataset. 
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SVM Tree Context 

Context-
based 
CRF 

Bed 0.53 0.64 0.71 

Bicycle 0.59 0.72 0.78 

Cabinet 0.44 0.53 0.54 

Car 0.58 0.80 0.88 

Keyboard 0.52 0.64 0.72 

Monitor 0.46 0.63 0.66 

Street sign 0.52 0.68 0.72 

Table 0.37 0.49 0.50 

Table 1- Object detection performance comparison 

 
Figure 5. Parameter selection for pairwise and 

high-order potentials. 
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Our results demonstrated that use of context-based high-
ordered potentials has outperformance advantages over 
the base-line and the state-of-the-art context based object 
detectors.  
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(a) Original image  (b) Ground Truth   (c) Baseline Detector   (d) CBCRF 

Figure 7- Sample annotation result. Green bounding boxes are correctly classified labels.  
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